Listen to this Post
➤ Join Our community for latest AI updates: https://lnkd.in/gNbAeJG2
➤ Access Top AI models like GPT-4o, Llama, and more, all in one place for FREE: https://thealpha.dev
You Should Know:
1. Data Collection
- Linux Command to download text datasets:
wget https://example.com/dataset.txt
- Python Script to clean text data:
import re def clean_text(text): return re.sub(r'[^\w\s]', '', text)
2. Tokenization
- Using `transformers` library in Python:
from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("gpt-4") tokens = tokenizer.encode("Hello, world!")
- Linux `awk` for basic tokenization:
echo "Hello, world!" | awk '{for(i=1;i<=NF;i++) print $i}'
3. Embedding
- Generate embeddings with
sentence-transformers
:from sentence_transformers import SentenceTransformer model = SentenceTransformer('all-MiniLM-L6-v2') embeddings = model.encode("Sample text")
4. Model Architecture (Transformers)
- Run a Transformer model locally:
git clone https://github.com/huggingface/transformers cd transformers && pip install -e .
5. Training
- Fine-tune with Hugging Face:
from transformers import Trainer, TrainingArguments training_args = TrainingArguments(output_dir="./results") trainer = Trainer(model=model, args=training_args, train_dataset=dataset) trainer.train()
6. Inference
- Run GPT-4o via API:
curl -X POST https://api.openai.com/v1/chat/completions -H "Authorization: Bearer YOUR_KEY" -d '{"model":"gpt-4","messages":[{"role":"user","content":"Explain AI"}]}'
7. Fine-Tuning
- Use LoRA for efficient fine-tuning:
pip install peft
from peft import LoraConfig, get_peft_model lora_config = LoraConfig(task_type="CAUSAL_LM") model = get_peft_model(model, lora_config)
8. Deployment
- Deploy with FastAPI:
from fastapi import FastAPI app = FastAPI() @app.post("/predict") def predict(text: str): return {"response": model.generate(text)}
- Run FastAPI server:
uvicorn app:app --reload
9. Evaluation
- Calculate BLEU score in Python:
from nltk.translate.bleu_score import sentence_bleu score = sentence_bleu([bash], candidate)
What Undercode Say
Language models power modern AI, but their true strength lies in iterative refinement. From tokenization to deployment, each step demands precision. Future advancements will focus on:
– Efficient training (e.g., quantization with bitsandbytes
).
– Edge deployment (e.g., ONNX runtime for Windows/Linux).
– Ethical safeguards (e.g., NVIDIA NeMo Guardrails).
Expected Output:
A fully deployed AI model answering queries like:
User: "Explain quantum computing." AI: "Quantum computing leverages qubits to perform complex calculations exponentially faster than classical computers..."
Prediction
By 2026, 70% of enterprises will integrate custom fine-tuned LLMs into workflows, driven by tools like LoRA and Hugging Face.
Relevant URLs:
References:
Reported By: Thealphadev Working – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅