Working of Language Models Explained

Listen to this Post

Featured Image
➤ Join Our community for latest AI updates: https://lnkd.in/gNbAeJG2
➤ Access Top AI models like GPT-4o, Llama, and more, all in one place for FREE: https://thealpha.dev

You Should Know:

1. Data Collection

  • Linux Command to download text datasets:
    wget https://example.com/dataset.txt 
    
  • Python Script to clean text data:
    import re 
    def clean_text(text): 
    return re.sub(r'[^\w\s]', '', text) 
    

2. Tokenization

  • Using `transformers` library in Python:
    from transformers import AutoTokenizer 
    tokenizer = AutoTokenizer.from_pretrained("gpt-4") 
    tokens = tokenizer.encode("Hello, world!") 
    
  • Linux `awk` for basic tokenization:
    echo "Hello, world!" | awk '{for(i=1;i<=NF;i++) print $i}' 
    

3. Embedding

  • Generate embeddings with sentence-transformers:
    from sentence_transformers import SentenceTransformer 
    model = SentenceTransformer('all-MiniLM-L6-v2') 
    embeddings = model.encode("Sample text") 
    

4. Model Architecture (Transformers)

  • Run a Transformer model locally:
    git clone https://github.com/huggingface/transformers 
    cd transformers && pip install -e . 
    

5. Training

  • Fine-tune with Hugging Face:
    from transformers import Trainer, TrainingArguments 
    training_args = TrainingArguments(output_dir="./results") 
    trainer = Trainer(model=model, args=training_args, train_dataset=dataset) 
    trainer.train() 
    

6. Inference

  • Run GPT-4o via API:
    curl -X POST https://api.openai.com/v1/chat/completions -H "Authorization: Bearer YOUR_KEY" -d '{"model":"gpt-4","messages":[{"role":"user","content":"Explain AI"}]}' 
    

7. Fine-Tuning

  • Use LoRA for efficient fine-tuning:
    pip install peft 
    
    from peft import LoraConfig, get_peft_model 
    lora_config = LoraConfig(task_type="CAUSAL_LM") 
    model = get_peft_model(model, lora_config) 
    

8. Deployment

  • Deploy with FastAPI:
    from fastapi import FastAPI 
    app = FastAPI() 
    @app.post("/predict") 
    def predict(text: str): 
    return {"response": model.generate(text)} 
    
  • Run FastAPI server:
    uvicorn app:app --reload 
    

9. Evaluation

  • Calculate BLEU score in Python:
    from nltk.translate.bleu_score import sentence_bleu 
    score = sentence_bleu([bash], candidate) 
    

What Undercode Say

Language models power modern AI, but their true strength lies in iterative refinement. From tokenization to deployment, each step demands precision. Future advancements will focus on:
– Efficient training (e.g., quantization with bitsandbytes).
– Edge deployment (e.g., ONNX runtime for Windows/Linux).
– Ethical safeguards (e.g., NVIDIA NeMo Guardrails).

Expected Output:

A fully deployed AI model answering queries like:

User: "Explain quantum computing." 
AI: "Quantum computing leverages qubits to perform complex calculations exponentially faster than classical computers..." 

Prediction

By 2026, 70% of enterprises will integrate custom fine-tuned LLMs into workflows, driven by tools like LoRA and Hugging Face.

Relevant URLs:

References:

Reported By: Thealphadev Working – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅

Join Our Cyber World:

💬 Whatsapp | 💬 Telegram