Types of RAG: Enhancing AI with Retrieval-Augmented Generation

Listen to this Post

Building smarter AI systems requires optimizing how they retrieve and generate information! That’s where Retrieval-Augmented Generation (RAG) plays a crucial role in enhancing AI’s accuracy and relevance.

Different types of RAG techniques improve how AI processes data:

🔹 Naïve RAG – A simple approach using basic vector search, ideal for static FAQ-based AI but sometimes leading to irrelevant results.
🔹 Agentic RAG (Router) – Intelligently picks the best data sources based on query type, ensuring more accurate retrieval.
🔹 Agentic RAG (Multi-Agent) – Uses multiple AI agents for specialized tasks like retrieval, ranking, and generation, boosting precision.
🔹 Multimodal RAG – Retrieves information from text, images, video, and audio, enabling AI to process richer contextual data.
🔹 Hybrid RAG – Merges keyword-based and vector search for balanced accuracy and contextual relevance.
🔹 Retrieve-and-Rank RAG – Applies deep learning models to refine search results, ensuring higher precision.
🔹 Graph RAG – Leverages knowledge graphs for structured retrieval, enhancing AI’s reasoning and understanding.

By leveraging the right RAG approach, AI can deliver more insightful and context-aware responses, unlocking new possibilities across industries.

You Should Know: Practical Implementation of RAG Techniques

  1. Setting Up Naïve RAG with Python (FAISS + HuggingFace)
    from sentence_transformers import SentenceTransformer 
    import faiss 
    import numpy as np </li>
    </ol>
    
    <h1>Load pre-trained model</h1>
    
    model = SentenceTransformer('all-MiniLM-L6-v2')
    
    <h1>Sample documents</h1>
    
    documents = ["RAG improves AI responses.", "Vector search enables semantic retrieval."] 
    embeddings = model.encode(documents)
    
    <h1>Build FAISS index</h1>
    
    dimension = embeddings.shape[1] 
    index = faiss.IndexFlatL2(dimension) 
    index.add(embeddings)
    
    <h1>Query</h1>
    
    query = "How does RAG work?" 
    query_embedding = model.encode([query]) 
    k = 1 # Top-1 result 
    distances, indices = index.search(query_embedding, k) 
    print("Retrieved document:", documents[indices[0][0]]) 
    

    2. Agentic RAG with LangChain

    from langchain.agents import Tool, AgentExecutor 
    from langchain import OpenAI
    
    <h1>Define retrieval tool</h1>
    
    def retrieve_docs(query): 
    return "Relevant context based on query."
    
    tools = [Tool(name="Retriever", func=retrieve_docs, description="Fetches documents")] 
    agent = AgentExecutor.from_agent_and_tools(agent=OpenAI(temperature=0), tools=tools) 
    print(agent.run("Explain Agentic RAG.")) 
    

    3. Multimodal RAG with CLIP

    
    <h1>Install CLIP for image-text retrieval</h1>
    
    pip install git+https://github.com/openai/CLIP.git
    
    <h1>Encode images and text</h1>
    
    import clip 
    model, preprocess = clip.load("ViT-B/32") 
    image_features = model.encode_image(preprocess(image)) 
    text_features = model.encode_text(clip.tokenize(["RAG for images"])) 
    

    4. Hybrid RAG with Elasticsearch + BERT

    
    <h1>Elasticsearch hybrid search setup</h1>
    
    curl -X PUT "localhost:9200/rag_index" -H 'Content-Type: application/json' -d' 
    { 
    "mappings": { 
    "properties": { 
    "text": { "type": "text" }, 
    "vector": { "type": "dense_vector", "dims": 768 } 
    } 
    } 
    }' 
    

    5. Graph RAG with Neo4j

    [cypher]
    // Create a knowledge graph
    CREATE (rag:Concept {name: “Retrieval-Augmented Generation”})
    CREATE (ai:Concept {name: “Artificial Intelligence”})
    CREATE (rag)-[:RELATES_TO]->(ai)
    [/cypher]

    What Undercode Say

    RAG techniques bridge the gap between retrieval systems and generative AI, offering scalable solutions for dynamic knowledge integration. Key takeaways:
    – Naïve RAG is easy to implement but lacks sophistication.
    – Agentic RAG introduces dynamic routing for precision.
    – Multimodal RAG expands AI’s sensory capabilities.
    – Hybrid/Grap RAG combines structured and unstructured data for deeper insights.

    For Linux/Windows practitioners, integrating RAG with CLI tools enhances automation:

    
    <h1>Linux: Batch-process documents for embeddings</h1>
    
    find /data/docs -name "*.txt" | xargs -I {} python encode.py {}
    
    <h1>Windows PowerShell: Query Elasticsearch</h1>
    
    Invoke-RestMethod -Uri "http://localhost:9200/rag_index/_search" -Method Post -Body '{"query":{"match":{"text":"RAG"}}}' 
    

    Expected Output:

    A functional RAG pipeline delivering context-aware AI responses with optimized retrieval.

    URLs for Further Learning:

    References:

    Reported By: Habib Shaikh – Hackers Feeds
    Extra Hub: Undercode MoN
    Basic Verification: Pass ✅

    Join Our Cyber World:

    💬 Whatsapp | 💬 TelegramFeatured Image