Listen to this Post
Building smarter AI systems requires optimizing how they retrieve and generate information! That’s where Retrieval-Augmented Generation (RAG) plays a crucial role in enhancing AI’s accuracy and relevance.
Different types of RAG techniques improve how AI processes data:
🔹 Naïve RAG – A simple approach using basic vector search, ideal for static FAQ-based AI but sometimes leading to irrelevant results.
🔹 Agentic RAG (Router) – Intelligently picks the best data sources based on query type, ensuring more accurate retrieval.
🔹 Agentic RAG (Multi-Agent) – Uses multiple AI agents for specialized tasks like retrieval, ranking, and generation, boosting precision.
🔹 Multimodal RAG – Retrieves information from text, images, video, and audio, enabling AI to process richer contextual data.
🔹 Hybrid RAG – Merges keyword-based and vector search for balanced accuracy and contextual relevance.
🔹 Retrieve-and-Rank RAG – Applies deep learning models to refine search results, ensuring higher precision.
🔹 Graph RAG – Leverages knowledge graphs for structured retrieval, enhancing AI’s reasoning and understanding.
By leveraging the right RAG approach, AI can deliver more insightful and context-aware responses, unlocking new possibilities across industries.
You Should Know: Practical Implementation of RAG Techniques
- Setting Up Naïve RAG with Python (FAISS + HuggingFace)
from sentence_transformers import SentenceTransformer import faiss import numpy as np </li> </ol> <h1>Load pre-trained model</h1> model = SentenceTransformer('all-MiniLM-L6-v2') <h1>Sample documents</h1> documents = ["RAG improves AI responses.", "Vector search enables semantic retrieval."] embeddings = model.encode(documents) <h1>Build FAISS index</h1> dimension = embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(embeddings) <h1>Query</h1> query = "How does RAG work?" query_embedding = model.encode([query]) k = 1 # Top-1 result distances, indices = index.search(query_embedding, k) print("Retrieved document:", documents[indices[0][0]])
2. Agentic RAG with LangChain
from langchain.agents import Tool, AgentExecutor from langchain import OpenAI <h1>Define retrieval tool</h1> def retrieve_docs(query): return "Relevant context based on query." tools = [Tool(name="Retriever", func=retrieve_docs, description="Fetches documents")] agent = AgentExecutor.from_agent_and_tools(agent=OpenAI(temperature=0), tools=tools) print(agent.run("Explain Agentic RAG."))
3. Multimodal RAG with CLIP
<h1>Install CLIP for image-text retrieval</h1> pip install git+https://github.com/openai/CLIP.git <h1>Encode images and text</h1> import clip model, preprocess = clip.load("ViT-B/32") image_features = model.encode_image(preprocess(image)) text_features = model.encode_text(clip.tokenize(["RAG for images"]))
4. Hybrid RAG with Elasticsearch + BERT
<h1>Elasticsearch hybrid search setup</h1> curl -X PUT "localhost:9200/rag_index" -H 'Content-Type: application/json' -d' { "mappings": { "properties": { "text": { "type": "text" }, "vector": { "type": "dense_vector", "dims": 768 } } } }'
5. Graph RAG with Neo4j
[cypher]
// Create a knowledge graph
CREATE (rag:Concept {name: “Retrieval-Augmented Generation”})
CREATE (ai:Concept {name: “Artificial Intelligence”})
CREATE (rag)-[:RELATES_TO]->(ai)
[/cypher]What Undercode Say
RAG techniques bridge the gap between retrieval systems and generative AI, offering scalable solutions for dynamic knowledge integration. Key takeaways:
– Naïve RAG is easy to implement but lacks sophistication.
– Agentic RAG introduces dynamic routing for precision.
– Multimodal RAG expands AI’s sensory capabilities.
– Hybrid/Grap RAG combines structured and unstructured data for deeper insights.For Linux/Windows practitioners, integrating RAG with CLI tools enhances automation:
<h1>Linux: Batch-process documents for embeddings</h1> find /data/docs -name "*.txt" | xargs -I {} python encode.py {} <h1>Windows PowerShell: Query Elasticsearch</h1> Invoke-RestMethod -Uri "http://localhost:9200/rag_index/_search" -Method Post -Body '{"query":{"match":{"text":"RAG"}}}'
Expected Output:
A functional RAG pipeline delivering context-aware AI responses with optimized retrieval.
URLs for Further Learning:
References:
Reported By: Habib Shaikh – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅Join Our Cyber World: