The Pain of Batch Updating 80k Records In DynamoDB

Listen to this Post

Featured Image
Bulk updating records in DynamoDB can be a daunting task, especially when dealing with large datasets. Unlike traditional SQL databases, DynamoDB lacks built-in batch update operations, forcing developers to design custom workflows. Below is a breakdown of how to efficiently handle bulk updates in DynamoDB, along with practical commands and scripts.

You Should Know:

1. Scan & BatchWriteItem:

DynamoDB’s `Scan` retrieves all records, while `BatchWriteItem` allows batch updates (limited to 25 items per request).

AWS CLI Command:

aws dynamodb scan --table-name YourTable --output json > scan_output.json 

Python Script (Boto3) for Batch Updates:

import boto3 
import json

dynamodb = boto3.client('dynamodb')

Load scanned data 
with open('scan_output.json') as f: 
items = json.load(f)['Items']

Prepare batch update requests 
batch_size = 25 
for i in range(0, len(items), batch_size): 
batch = items[i:i+batch_size] 
requests = [{ 
'PutRequest': { 
'Item': item  Modify item as needed 
} 
} for item in batch]

response = dynamodb.batch_write_item( 
RequestItems={'YourTable': requests} 
) 
print(f"Batch {i//batch_size + 1} updated.") 

2. Efficient Filtering with Query:

Use `Query` instead of `Scan` when possible to reduce read costs.

AWS CLI Command:

aws dynamodb query --table-name YourTable --key-condition-expression "PK = :pk" \ 
--expression-attribute-values '{":pk": {"S": "partition_key_value"}}' 

3. Parallel Processing for Large Datasets:

Use AWS Lambda or Step Functions to process updates in parallel.

AWS Lambda Python Example:

import boto3

def lambda_handler(event, context): 
dynamodb = boto3.resource('dynamodb') 
table = dynamodb.Table('YourTable') 
for record in event['Records']: 
table.update_item( 
Key={'PK': record['PK'], 'SK': record['SK']}, 
UpdateExpression='SET attr = :val', 
ExpressionAttributeNames={'attr': 'attribute_name'}, 
ExpressionAttributeValues={':val': 'new_value'} 
) 

4. Optimizing WCUs/RCUs:

Monitor and adjust provisioned throughput to avoid throttling.

AWS CLI Command to Update Table Capacity:

aws dynamodb update-table --table-name YourTable \ 
--provisioned-throughput ReadCapacityUnits=100,WriteCapacityUnits=100 

What Undercode Say:

Batch operations in DynamoDB require careful planning to avoid performance bottlenecks and high costs. Leveraging AWS tools like BatchWriteItem, Query, and parallel processing (Lambda/Step Functions) ensures efficient updates. Always monitor WCU/RCU usage and optimize queries to minimize expenses.

Prediction:

As DynamoDB evolves, AWS may introduce native batch update operations, reducing the need for custom workflows. Until then, mastering these techniques remains essential for large-scale applications.

Expected Output:

  • Successfully updated 80k records in DynamoDB.
  • Reduced execution time via parallel processing.
  • Optimized WCU/RCU consumption.

Relevant URLs:

IT/Security Reporter URL:

Reported By: Amo Moloko – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅

Join Our Cyber World:

💬 Whatsapp | 💬 Telegram