Listen to this Post
API performance is critical for user retention and system efficiency. Below are proven strategies to enhance your API speed, along with practical implementations.
You Should Know:
1. Caching
Storing frequently accessed data in memory reduces database load.
Redis Example:
Install Redis on Linux sudo apt update && sudo apt install redis-server -y sudo systemctl enable redis
Python (Flask-Caching):
from flask import Flask from flask_caching import Cache app = Flask(<strong>name</strong>) cache = Cache(app, config={'CACHE_TYPE': 'RedisCache', 'CACHE_REDIS_URL': 'redis://localhost:6379/0'}) @app.route('/data') @cache.cached(timeout=60) def get_data(): return "Cached for 60 seconds"
2. Payload Compression
Reducing data size with `gzip` or `Brotli`.
Nginx Compression Setup:
gzip on; gzip_types text/plain application/json; gzip_min_length 1000;
Node.js (Express Middleware):
const express = require('express'); const compression = require('compression'); const app = express(); app.use(compression());
3. Asynchronous Logging
Non-blocking logging improves response times.
Python (Logging with AsyncIO):
import logging import asyncio async def log_async(message): logging.info(message) asyncio.run(log_async("Async log recorded"))
4. Connection Pooling
Reuse database connections for efficiency.
PostgreSQL (Python Psycopg2):
import psycopg2 from psycopg2 import pool connection_pool = psycopg2.pool.SimpleConnectionPool( 1, 10, user="user", password="pass", host="localhost", database="db" ) conn = connection_pool.getconn() cursor = conn.cursor() cursor.execute("SELECT FROM users")
5. Pagination
Limit response size for faster data retrieval.
SQL Pagination:
SELECT FROM orders LIMIT 10 OFFSET 20;
REST API (Python Flask):
from flask import request @app.route('/orders') def get_orders(): page = request.args.get('page', 1, type=int) per_page = 10 offset = (page - 1) per_page return f"Fetching {per_page} orders from offset {offset}"
What Undercode Say:
Optimizing API performance requires a mix of caching, compression, and efficient resource management. Implement these techniques to reduce latency and improve scalability.
Expected Output:
- Faster API response times (<200ms).
- Reduced server load.
- Improved user experience.
Prediction:
Future APIs will leverage AI-driven auto-scaling and real-time adaptive compression for even greater efficiency.
Relevant URLs:
IT/Security Reporter URL:
Reported By: Aaronsimca Your – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅