When designing a system, selecting the right database is crucial. Overcomplicating the decision can lead to wasted time and suboptimal performance. Here’s a simplified approach based on your data type and usage:
Database Selection Flowchart
- Structured + OLTP? → Relational DB (PostgreSQL, MySQL)
- Structured + OLAP? → Columnar DB (ClickHouse, Amazon Redshift)
- Unstructured? → Object Store (AWS S3, Google Cloud Storage)
Semistructured Data?
- Dictionary-style? → Key-Value or In-memory DB (Redis, DynamoDB)
- Lots of relationships? → Graph DB (Neo4j, ArangoDB)
- Time-based? → Time-series DB (InfluxDB, TimescaleDB)
- Location data? → Geo DB (MongoDB with Geospatial, PostGIS)
- Nested JSON? → Document Store (MongoDB, Couchbase)
- Search-heavy? → Search DB (Elasticsearch, Solr)
You Should Know: Database Commands & Practical Examples
1. PostgreSQL (Relational DB)
-- Create a table CREATE TABLE users ( id SERIAL PRIMARY KEY, name VARCHAR(100), email VARCHAR(100) UNIQUE ); -- Insert data INSERT INTO users (name, email) VALUES ('Alice', '[email protected]'); -- Query with JOIN SELECT u.name, o.order_id FROM users u JOIN orders o ON u.id = o.user_id;
2. MongoDB (Document Store)
// Insert a document db.users.insertOne({ name: "Bob", email: "[email protected]", address: { city: "New York", zip: "10001" } }); // Query nested JSON db.users.find({ "address.city": "New York" });
3. Redis (Key-Value Store)
Set a key-value pair SET user:1001 "John Doe" Get value GET user:1001 Set with TTL (expiry) SET session:xyz "token123" EX 3600
4. Elasticsearch (Search DB)
// Index a document POST /products/_doc { "name": "Wireless Mouse", "price": 29.99, "category": "Electronics" } // Search query GET /products/_search { "query": { "match": { "category": "Electronics" } } }
5. InfluxDB (Time-Series DB)
-- Insert time-series data INSERT cpu_usage,host=server1 value=0.64 1630425600000000000 -- Query data from last hour SELECT FROM cpu_usage WHERE time > now() - 1h
What Undercode Say
Choosing the right database is a balance between data structure, query patterns, and scalability. While relational databases (PostgreSQL) are versatile, specialized databases (Graph, Time-Series) excel in niche scenarios.
Linux & Windows Commands for DB Management
- Backup PostgreSQL
pg_dump -U username -d dbname > backup.sql
- Restore MySQL
mysql -u root -p dbname < backup.sql
- Check Redis Memory Usage
redis-cli info memory
- Monitor MongoDB Performance
mongotop mongostat
- Windows: Start/Stop MySQL Service
net start mysql net stop mysql
Prediction
As data complexity grows, multi-model databases (e.g., PostgreSQL with JSONB + Geospatial) will dominate, reducing the need for separate DBs. AI-driven auto-scaling DBs will optimize performance dynamically.
Expected Output:
A structured guide on database selection with practical commands for developers.
References:
Reported By: Raul Junco – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅