Securing AI/LLMs in : A Practical Guide To Securing & Deploying AI

Listen to this Post

A layered framework for CISOs to secure AI model stacks, addressing vulnerabilities from data inputs to user interfaces. The framework highlights three critical layers:

  1. Data Layer – Secure the Inputs That Feed Your Model
    AI security starts with data integrity and access controls. Key practices:

– Data Classification & Access Controls: Use DSPM (Data Security Posture Management) tools to classify sensitive data. Enforce DLP (Data Loss Prevention) policies and strict IAM (Identity and Access Management) permissions.
– Data Integrity: Prevent poisoning attacks by validating training datasets. Tools like Cyera help monitor data lineage.
– Encryption & Monitoring: Secure RAG (Retrieval-Augmented Generation) and embedded models with encryption (e.g., AES-256) and real-time monitoring.

You Should Know:


<h1>Linux command to encrypt files with AES-256:</h1>

openssl enc -aes-256-cbc -salt -in data.txt -out encrypted_data.enc

<h1>Monitor file integrity with AIDE (Advanced Intrusion Detection Environment):</h1>

sudo aideinit
sudo aide --check

2. Model Layer – Protect the Model Lifecycle

Whether using in-house or managed AI, secure the model development pipeline:
SDLC for AI: Apply AppSec methodologies to model training. Use eBPF for runtime anomaly detection.
Adversarial Hardening: Test models against FGSM (Fast Gradient Sign Method) attacks. Tools: Protect AI, HiddenLayer.
AI-SPM (AI Security Posture Management): Gain visibility into third-party model risks.

You Should Know:


<h1>Scan for adversarial inputs with Python (using CleverHans library):</h1>

import tensorflow as tf
from cleverhans.tf2.attacks import FastGradientMethod
model = tf.keras.models.load_model('your_model.h5')
fgsm = FastGradientMethod(model)
adv_example = fgsm.generate(input_sample, eps=0.1)

3. Interface Layer – Secure User & System Interactions

Prevent prompt injections and misuse:

  • Input Sanitization: Use regex filtering for LLM inputs.
  • API Rate Limiting: Enforce quotas with Nginx or Kong API Gateway.
  • Shadow AI Monitoring: Detect unauthorized AI usage via SIEM (Splunk, ELK Stack).

You Should Know:


<h1>Nginx rate-limiting configuration:</h1>

limit_req_zone $binary_remote_addr zone=ai_limit:10m rate=5r/s;
server {
location /api/ {
limit_req zone=ai_limit burst=10 nodelay;
}
}

Case Studies: Vendor Examples

  • Data Layer: Cyera, Palo Alto Networks
  • Model Layer: Protect AI, TrojAI
  • Interface Layer: Prompt Security, Zenity

What Undercode Say:

AI security requires a defense-in-depth approach. Key commands to harden systems:


<h1>Linux: Check for suspicious processes</h1>

ps aux | grep -E '(curl|wget|python|sh)'

<h1>Windows: Audit AI service permissions</h1>

icacls "C:\AI_Models" /grant Administrators:(F)

<h1>Docker: Restrict AI container capabilities</h1>

docker run --cap-drop=ALL --cap-add=NET_BIND_SERVICE ai_model

Adopt zero-trust principles for AI deployments.

Expected Output:

References:

Reported By: Francis Odum – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅

Join Our Cyber World:

💬 Whatsapp | 💬 TelegramFeatured Image