Practical AI Agent Courses For Builders

Listen to this Post

Skip the fluff. Learn what helps you ship. Over the past month, I explored hands-on AI Agent courses that actually teach you how to build, not just watch demos.

  1. Fundamentals of AI Agents Using RAG and LangChain (IBM):
    https://lnkd.in/eNBMM4MR

2. Large Language Model Agents (Stanford University):

https://lnkd.in/en3k6ucW

3. AI Agentic Design Patterns with AutoGen (Microsoft):

https://lnkd.in/ddTkbhuK

4. AI Agents in LangGraph (LangChain):

https://lnkd.in/edGSVgx8

5. Serverless Agentic Workflows with Amazon Bedrock (AWS):

https://lnkd.in/esfj-M4R

6. Multi AI Agent Systems with CrewAI (DeepLearning.AI):

https://lnkd.in/gXDfZu_p

  1. Smol Agents: Build & Deploy AI Agents (Hugging Face):
    https://lnkd.in/ghF-gxTi

8. Advanced Large Language Model Agents (UC Berkeley):

https://lnkd.in/gDwbyayU

You Should Know:

Hands-on AI Agent Development

To get started with AI agents, here are some essential commands and tools:

1. Setting Up Python Environment:

python -m venv ai_agent_env 
source ai_agent_env/bin/activate  Linux/Mac 
.\ai_agent_env\Scripts\activate  Windows 
pip install langchain autogen crewai transformers 

2. Running a Basic LangChain Agent:

from langchain.agents import load_tools, initialize_agent 
from langchain.llms import OpenAI

llm = OpenAI(temperature=0.7) 
tools = load_tools(["serpapi", "llm-math"], llm=llm) 
agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) 
agent.run("What is the capital of France?") 

3. Deploying AI Agents with Docker:

FROM python:3.9-slim 
WORKDIR /app 
COPY requirements.txt . 
RUN pip install -r requirements.txt 
COPY . . 
CMD ["python", "agent_app.py"] 

4. AWS Bedrock CLI Setup:

aws configure 
aws bedrock list-foundation-models 

5. AutoGen Multi-Agent Workflow:

from autogen import AssistantAgent, UserProxyAgent

assistant = AssistantAgent("assistant") 
user_proxy = UserProxyAgent("user_proxy") 
user_proxy.initiate_chat(assistant, message="Explain AI agents in simple terms.") 

6. Monitoring AI Agents in Linux:

ps aux | grep python  Check running agents 
top -p $(pgrep -d',' python)  Monitor CPU/Memory 

What Undercode Say:

AI agents are revolutionizing automation, from chatbots to autonomous workflows. Mastering tools like LangChain, AutoGen, and AWS Bedrock is essential for modern AI engineers.

Key Takeaways:

  • Use Python virtual environments (venv) for dependency management.
  • Docker simplifies deployment (docker build -t ai-agent .).
  • AWS CLI (aws bedrock) helps manage cloud-based AI models.
  • Linux commands (ps, top) monitor agent performance.

Expected Output:

A fully functional AI agent responding to queries or automating workflows.

End of .

References:

Reported By: Neeraj 125601238 – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅

Join Our Cyber World:

💬 Whatsapp | 💬 TelegramFeatured Image