Listen to this Post
Generative AI (Gen AI)
- Creates text, code, or images using prompts
- No memory or reasoning capabilities
- Best for content creation
AI Agents
- Executes predefined workflows
- Limited autonomy and reasoning
- Uses basic tools for task completion
Agentic AI
- Autonomous problem-solving with deep reasoning
- Coordinates multiple agents for complex tasks
- Adapts without human intervention
Comparison Insights
- Creativity: Gen AI
- Execution: AI Agents
- Autonomy: Agentic AI
Join Our AI Community: Latest AI Updates
Free AI Models Access: Signup Here
You Should Know:
AI Implementation with Linux & Python
1. Run Generative AI Locally (Linux)
git clone https://github.com/oobabooga/text-generation-webui cd text-generation-webui pip install -r requirements.txt ./start_linux.sh --model=gpt-4
2. Build a Simple AI Agent (Python)
from langchain.agents import load_tools, initialize_agent from langchain.llms import OpenAI llm = OpenAI(temperature=0) tools = load_tools(["serpapi"], llm=llm) agent = initialize_agent(tools, llm, agent="zero-shot-react-description") agent.run("What’s the latest news on AI?")
3. Deploy Agentic AI with Docker
docker pull huggingface/transformers docker run -it -p 5000:5000 huggingface/transformers python agentic_ai_server.py
4. Monitor AI Performance (Linux Commands)
nvidia-smi Check GPU usage htop Monitor CPU/Memory journalctl -u docker --no-pager -n 50 Check Docker logs
5. Automate AI Workflows (Cron Jobs)
crontab -e /30 /usr/bin/python3 /path/to/ai_agent.py >> /var/log/ai.log
What Undercode Say:
AI is evolving rapidly, and understanding the differences between Gen AI, AI Agents, and Agentic AI is crucial for implementation. Linux and Python remain key tools for deploying AI solutions, whether for automation, content generation, or autonomous decision-making.
Expected Output:
- Gen AI: Text/Image Output
- AI Agents: Task Completion Logs
- Agentic AI: Multi-Agent Coordination Reports
Prediction:
By 2025, Agentic AI will dominate enterprise automation, reducing human intervention in complex workflows by 40%. Organizations leveraging AI with strong DevOps practices (Docker, Kubernetes, CI/CD) will lead the adoption curve.
Relevant Links:
IT/Security Reporter URL:
Reported By: Naresh Kumari – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅