Listen to this Post
Shirin Khosravi Jam’s curated list of resources provides a structured path for transitioning from Data Science to MLOps and AI Agents. Below are the key resources with actionable steps and commands to reinforce learning.
📊 Data Science Foundations
- ISLR
– <a href="https://lnkd.in/djGPVVwJ">Link</a> </li> </ol> - Practice R code for statistical learning: [bash] library(ISLR) data(Wage) lm.fit <- lm(wage ~ age + education, data=Wage) summary(lm.fit)
2. Practical Statistics for Data Science
– <a href="https://lnkd.in/dBWucpRX">Link</a> - Python example for hypothesis testing: [bash] import scipy.stats as stats t_stat, p_val = stats.ttest_ind(group1, group2)
3. Hands-On ML with TensorFlow & Keras
– <a href="https://lnkd.in/dWrf5pbS">Link</a> - Train a simple neural network: [bash] model = tf.keras.Sequential([tf.keras.layers.Dense(10, activation='relu')]) model.compile(optimizer='adam', loss='mse') model.fit(X_train, y_train, epochs=10)
⚙️ MLOps & End-to-End Systems
- Designing Machine Learning Systems
– <a href="https://lnkd.in/dY8NJMRk">Link</a> </li> </ol> - Dockerize an ML model: [bash] FROM python:3.8 COPY requirements.txt . RUN pip install -r requirements.txt COPY app.py . CMD ["python", "app.py"]
2. AWS Cloud Practitioner
– <a href="https://lnkd.in/dA2wuP44">Link</a> - AWS CLI setup: [bash] aws configure aws s3 ls
3. AWS ML Specialty
– <a href="https://lnkd.in/dzjVT3ZX">Link</a> - Deploy a SageMaker model: [bash] import sagemaker predictor = sagemaker.deploy(initial_instance_count=1, instance_type='ml.m5.large')
🧠 LLMs + AI Agents + RAG
- Hands-On LLMs
– <a href="https://lnkd.in/dVmn83XB">Link</a> </li> </ol> - Run a local LLM with Ollama: [bash] ollama pull llama3 ollama run llama3 "Explain RAG"
2. Awesome GenAI Projects
– <a href="https://lnkd.in/dtFTZsCs">Link</a> - Clone and run a LangChain project: [bash] git clone https://github.com/awesome-genai-project python3 -m venv venv && source venv/bin/activate pip install -r requirements.txt
3. RAG Techniques
– <a href="https://lnkd.in/dD4S8Cq2">Link</a> - Ingest documents into a vector DB: [bash] from langchain_community.vectorstores import FAISS db = FAISS.from_documents(docs, embeddings)
🛠️ AI Engineering
- AI Engineering
– <a href="https://lnkd.in/dqwDjHVa">Link</a> </li> </ol> - Monitor model performance with Prometheus: [bash] prometheus.yml scrape_configs: - job_name: 'model_metrics' static_configs: - targets: ['localhost:8000']
You Should Know:
- Linux commands for MLOps:
ps aux | grep python Find running ML processes df -h Check disk space for large datasets
- Windows PowerShell for AI:
Get-Process | Where-Object { $_.CPU -gt 50 } Monitor resource-heavy tasks
What Undercode Say:
The shift from theory to production requires hands-on experimentation. Use Docker for reproducibility, AWS for scalability, and LangChain for LLM workflows. Always validate models with real-world data before deployment.
Prediction:
AI engineering will increasingly merge with DevOps, requiring skills in containerization, cloud orchestration, and real-time monitoring.
Expected Output:
A structured learning path with executable code snippets for immediate application.
URLs embedded for direct access to resources.
IT/Security Reporter URL:
Reported By: Shirin Khosravi – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅Join Our Cyber World:
- Linux commands for MLOps:
- AI Engineering
- Hands-On LLMs
- Designing Machine Learning Systems