Building Your Own ML Model in Months: A Step-by-Step Roadmap

Listen to this Post

This 8-week roadmap guides you through building a Machine Learning (ML) model from scratch, covering Python, data preprocessing, supervised/unsupervised learning, deep learning, and deployment.

Week 1: Python & Math Foundation

  • Python Basics: Variables, loops, functions, and libraries (NumPy, Pandas).
  • Math Essentials: Linear algebra, probability, and statistics.
  • Data Visualization: Matplotlib and Seaborn for plotting.

You Should Know:

 Install Python libraries 
pip install numpy pandas matplotlib seaborn

Basic NumPy array operations 
import numpy as np 
arr = np.array([1, 2, 3]) 
print(arr  2)  Output: [2 4 6]

Pandas DataFrame 
import pandas as pd 
df = pd.DataFrame({"A": [1, 2], "B": [3, 4]}) 
print(df.head()) 

Week 2: Data Wrangling & Preprocessing

  • Handling Missing Data: Imputation techniques.
  • Feature Scaling: Normalization vs. Standardization.
  • Exploratory Data Analysis (EDA): Statistical summaries, correlation matrices.

You Should Know:

 Handling missing values 
df.fillna(df.mean(), inplace=True)

Standardization with Scikit-learn 
from sklearn.preprocessing import StandardScaler 
scaler = StandardScaler() 
scaled_data = scaler.fit_transform(df) 

Week 3: Supervised Learning – Regression

  • Linear, Ridge, Lasso Regression
  • Model Evaluation: MAE, MSE, R².

You Should Know:

 Linear Regression Example 
from sklearn.linear_model import LinearRegression 
model = LinearRegression() 
model.fit(X_train, y_train) 
predictions = model.predict(X_test) 

Week 4: Supervised Learning – Classification

  • Logistic Regression, KNN, Decision Trees
  • Evaluation Metrics: Confusion matrix, precision, recall.

You Should Know:

 Logistic Regression 
from sklearn.linear_model import LogisticRegression 
clf = LogisticRegression() 
clf.fit(X_train, y_train) 

Week 5: Unsupervised Learning

  • K-Means Clustering, PCA
  • Dimensionality Reduction

You Should Know:

 K-Means Clustering 
from sklearn.cluster import KMeans 
kmeans = KMeans(n_clusters=3) 
kmeans.fit(data) 

Week 6: Model Optimization

  • Cross-Validation, GridSearchCV
  • Feature Engineering

You Should Know:

 GridSearchCV for hyperparameter tuning 
from sklearn.model_selection import GridSearchCV 
params = {'n_neighbors': [3, 5, 7]} 
grid = GridSearchCV(KNeighborsClassifier(), params) 
grid.fit(X_train, y_train) 

Week 7: Deep Learning Basics

  • Neural Networks with TensorFlow/Keras
  • Digit Recognition (MNIST Example)

You Should Know:

 Simple Neural Network 
import tensorflow as tf 
model = tf.keras.Sequential([ 
tf.keras.layers.Dense(128, activation='relu'), 
tf.keras.layers.Dense(10, activation='softmax') 
]) 
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy') 

Week 8: Capstone Project

  • Deploy ML model (Flask/FastAPI)
  • GitHub & LinkedIn Showcase

You Should Know:

 Flask API for ML model 
pip install flask 
from flask import Flask, request, jsonify 
app = Flask(<strong>name</strong>)

@app.route('/predict', methods=['POST']) 
def predict(): 
data = request.json 
prediction = model.predict([bash]) 
return jsonify({"prediction": prediction.tolist()}) 

What Undercode Say

This roadmap ensures a structured approach to ML mastery. Key takeaways:
– Linux/CLI Commands:

 Monitor system resources while training models 
top -i 
nvidia-smi  GPU monitoring 

– Windows/WSL for ML:

wsl --install  Enable Linux on Windows 

– Git for Version Control:

git init 
git add . 
git commit -m "Initial ML project commit" 

Expected Output:

A fully functional ML model deployed with Flask, documented on GitHub, and showcased on LinkedIn.

Further Resources:

References:

Reported By: Manali Kulkarni – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅

Join Our Cyber World:

💬 Whatsapp | 💬 TelegramFeatured Image