Building Scalable Microservices: Pre-Production to Production Flow

Listen to this Post

Featured Image
Building scalable applications with microservices demands a structured approach from development to deployment. Below is a detailed breakdown of the workflow, including key tools and commands.

Pre-Production Flow

1. API Definition

  • Tools: OpenAPI, Postman
  • Commands:
    Generate OpenAPI docs (Swagger) 
    swagger-cli bundle api-spec.yaml -o openapi.json 
    

2. Microservices Development

  • Frameworks: Java (Spring Boot), Node.js, React
  • Testing: Jenkins, JUnit
  • Commands:
    Run JUnit tests (Maven) 
    mvn test 
    

3. Containerization

  • Tools: Docker, Kubernetes
  • Commands:
    Build Docker image 
    docker build -t my-service:1.0 .
    
    Push to registry 
    docker push my-registry/my-service:1.0
    
    Deploy to Kubernetes 
    kubectl apply -f deployment.yaml 
    

Production Flow

1. Traffic Routing

  • Tools: NGINX, Cloudflare (CDN)
  • Commands:
    Reload NGINX config 
    sudo nginx -s reload 
    

2. API Gateway & Service Discovery

  • Tools: Spring Boot, Netflix Eureka
  • Commands:
    Start Eureka server 
    java -jar eureka-server.jar 
    

3. Database & Caching

  • Tools: Redis, Elasticsearch, Kafka
  • Commands:

    Check Redis status 
    redis-cli ping
    
    Elasticsearch health check 
    curl -X GET "localhost:9200/_cluster/health" 
    

4. Monitoring & Logging

  • Tools: Prometheus, Grafana, Kubernetes Dashboard
  • Commands:

    Check Kubernetes pods 
    kubectl get pods
    
    View logs 
    kubectl logs <pod-name> 
    

You Should Know:

  • CI/CD Automation

    Jenkins pipeline example (Jenkinsfile) 
    pipeline { 
    agent any 
    stages { 
    stage('Build') { 
    steps { sh 'mvn clean package' } 
    } 
    stage('Deploy') { 
    steps { sh 'kubectl apply -f k8s/' } 
    } 
    } 
    } 
    

  • Kubernetes Scaling

    Scale a deployment 
    kubectl scale deployment my-app --replicas=5 
    

  • Debugging Kafka

    List Kafka topics 
    kafka-topics.sh --list --bootstrap-server localhost:9092 
    

What Undercode Say:

Microservices architecture thrives on automation, observability, and modularity. Key takeaways:
– Use Docker & Kubernetes for seamless deployments.
– Implement API gateways (Eureka, Zuul) for traffic management.
– Monitor with Prometheus & Grafana for real-time insights.
– Ensure CI/CD pipelines (Jenkins, GitLab CI) for rapid iterations.

Expected Output:

A fully automated, scalable microservices ecosystem with:

✔ Zero-downtime deployments

✔ Real-time monitoring

✔ High availability via Kubernetes

Prediction:

Microservices will increasingly adopt AI-driven auto-scaling and serverless integration, reducing manual orchestration efforts.

Relevant URLs:

IT/Security Reporter URL:

Reported By: Goyalshalini Building – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅

Join Our Cyber World:

💬 Whatsapp | 💬 Telegram