Become the Serverless DJ: How to Process Audio Using AWS?

Listen to this Post

Featured Image
Learn how to build a serverless audio processing solution on AWS using Lambda, API Gateway, DynamoDB, and S3. This example demonstrates how to leverage AWS services like Lego pieces to create a scalable application.

You Should Know:

1. AWS Lambda & FFmpeg for Audio Processing

AWS Lambda can process audio files using FFmpeg. Below is a sample Python Lambda function:

import os
import subprocess
import boto3

s3 = boto3.client('s3')

def lambda_handler(event, context):
bucket = event['Records'][bash]['s3']['bucket']['name']
key = event['Records'][bash]['s3']['object']['key']

Download file from S3
input_file = '/tmp/input.mp3'
output_file = '/tmp/output.wav'

s3.download_file(bucket, key, input_file)

Process audio using FFmpeg (convert MP3 to WAV)
subprocess.call(['ffmpeg', '-i', input_file, '-acodec', 'pcm_s16le', '-ar', '44100', output_file])

Upload processed file back to S3
s3.upload_file(output_file, bucket, f"processed/{key.split('.')[bash]}.wav")

return {'statusCode': 200, 'body': 'Audio processed successfully!'}

2. Generate S3 Pre-signed URLs for Secure Uploads

Use AWS SDK to generate pre-signed URLs for direct client uploads:

import boto3

s3 = boto3.client('s3')

def generate_presigned_url(bucket, key, expiration=3600):
url = s3.generate_presigned_url(
'put_object',
Params={'Bucket': bucket, 'Key': key},
ExpiresIn=expiration
)
return url

3. Deploy with AWS CDK (Infrastructure as Code)

Define your stack using AWS CDK (Python):

from aws_cdk import (
aws_lambda as lambda_,
aws_s3 as s3,
aws_apigateway as apigw,
core
)

class AudioProcessingStack(core.Stack):
def <strong>init</strong>(self, scope: core.Construct, id: str, kwargs) -> None:
super().<strong>init</strong>(scope, id, kwargs)

Create S3 bucket
bucket = s3.Bucket(self, "AudioBucket")

Lambda function
lambda_fn = lambda_.Function(
self, "AudioProcessor",
runtime=lambda_.Runtime.PYTHON_3_8,
handler="index.lambda_handler",
code=lambda_.Code.from_asset("lambda"),
environment={"BUCKET_NAME": bucket.bucket_name}
)

Grant permissions
bucket.grant_read_write(lambda_fn)

API Gateway
api = apigw.LambdaRestApi(
self, "AudioAPI",
handler=lambda_fn,
proxy=False
)

Add resource for presigned URL generation
presigned_resource = api.root.add_resource("presign")
presigned_resource.add_method("GET")

4. Store Metadata in DynamoDB

Track processed files in DynamoDB:

import boto3

dynamodb = boto3.resource('dynamodb')
table = dynamodb.Table('AudioMetadata')

def store_metadata(file_id, original_key, processed_key, status):
table.put_item(
Item={
'FileID': file_id,
'OriginalKey': original_key,
'ProcessedKey': processed_key,
'Status': status
}
)

5. Automate with AWS Step Functions

Orchestrate workflows using Step Functions for complex processing pipelines.

What Undercode Say:

This serverless architecture demonstrates how AWS services can be combined to build scalable, cost-efficient solutions. By leveraging Lambda, S3, DynamoDB, and API Gateway, developers can process audio files without managing servers.

Expected Output:

  • A fully automated audio processing pipeline
  • Secure file uploads via pre-signed URLs
  • Metadata tracking in DynamoDB
  • Infrastructure deployed via IaC (AWS CDK)

Prediction:

Serverless audio/video processing will grow as demand for real-time media applications increases, with AI-powered enhancements (e.g., noise reduction, transcription) becoming standard.

URLs:

IT/Security Reporter URL:

Reported By: Darryl Ruggles – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅

Join Our Cyber World:

💬 Whatsapp | 💬 Telegram