Auto-Scaling Batch Processes on EC via Queue Depth

Listen to this Post

Running over-provisioned resources in the cloud leads to unnecessary costs. Many deployments scale resources based on peak demand rather than real-time usage, resulting in wasted spending. KEDA (Kubernetes-based Event Driven Autoscaler) offers queue depth-based autoscaling for Kubernetes pods, but what if you’re using EC2 instances directly?

Craig Hecock from Clearwater Analytics explains how they implemented dynamic scaling for EC2 instances based on queue depth, optimizing resource usage and reducing costs. This approach ensures that compute resources scale dynamically with workload demands.

Read the full article here

You Should Know:

1. Setting Up CloudWatch Alarms for Queue Depth

To implement queue-based autoscaling, you need CloudWatch alarms monitoring your queue (e.g., SQS, RabbitMQ).

aws cloudwatch put-metric-alarm \ 
--alarm-name "HighQueueDepth" \ 
--metric-name "ApproximateNumberOfMessagesVisible" \ 
--namespace "AWS/SQS" \ 
--statistic "Average" \ 
--period 60 \ 
--threshold 1000 \ 
--comparison-operator "GreaterThanThreshold" \ 
--evaluation-periods 2 \ 
--alarm-actions "arn:aws:autoscaling:region:account-id:scalingPolicy:policy-id" 

2. Configuring Auto Scaling Policies

Define scaling policies in AWS Auto Scaling to trigger based on CloudWatch alarms.

aws autoscaling put-scaling-policy \ 
--auto-scaling-group-name "my-asg" \ 
--policy-name "ScaleOutPolicy" \ 
--scaling-adjustment 2 \ 
--adjustment-type "ChangeInCapacity" \ 
--cooldown 300 
  1. Using AWS Lambda for Custom Scaling Logic
    For more complex scaling rules, use Lambda to analyze queue depth and adjust EC2 instances accordingly.
import boto3

def lambda_handler(event, context): 
sqs = boto3.client('sqs') 
response = sqs.get_queue_attributes( 
QueueUrl='https://sqs.region.amazonaws.com/account-id/queue-name', 
AttributeNames=['ApproximateNumberOfMessagesVisible'] 
) 
msgs = int(response['Attributes']['ApproximateNumberOfMessagesVisible']) 
if msgs > 1000: 
autoscaling = boto3.client('autoscaling') 
autoscaling.set_desired_capacity( 
AutoScalingGroupName='my-asg', 
DesiredCapacity=10 
) 

4. Monitoring Scaling Events

Track scaling activities using AWS CLI:

aws autoscaling describe-scaling-activities \ 
--auto-scaling-group-name "my-asg" \ 
--max-items 10 

5. Cleanup Over-Provisioned Resources

Use AWS Cost Explorer and Trusted Advisor to identify underutilized instances.

aws ec2 describe-instances \ 
--query 'Reservations[].Instances[?State.Name==<code>running</code> && Tags[?Key==<code>AutoScalingGroupName</code>].Value==<code>my-asg</code>]' 

What Undercode Say

Optimizing cloud costs requires dynamic scaling strategies. Queue-based autoscaling ensures resources match real-time demand, reducing waste. AWS provides tools like CloudWatch, Auto Scaling, and Lambda for seamless implementation.

For Linux users, consider these additional commands for monitoring and scaling:

 Check CPU/Memory usage 
top 
htop 
free -h

List running processes 
ps aux | grep "application"

Terminate unused instances 
aws ec2 terminate-instances --instance-ids i-1234567890 

Windows administrators can use PowerShell for scaling automation:

 Get EC2 instance status 
Get-EC2Instance -InstanceId i-1234567890

Adjust Auto Scaling Group 
Set-ASGDesiredCapacity -AutoScalingGroupName "my-asg" -DesiredCapacity 5 

Expected Output:

A cost-efficient, dynamically scaling EC2 environment that adjusts based on queue depth, reducing cloud expenditure while maintaining performance.

Read the full article here

References:

Reported By: Darryl Ruggles – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅

Join Our Cyber World:

💬 Whatsapp | 💬 TelegramFeatured Image