Listen to this Post
Preparing for coding interviews requires mastering key problem-solving patterns. Below are nine crucial LeetCode patterns with verified code examples and practical steps to implement them effectively.
1. Two Pointers Pattern
Use Case: Efficiently solve array/string problems with O(n) time complexity.
Example: Removing duplicates from a sorted array.
def removeDuplicates(nums): if not nums: return 0 slow = 0 for fast in range(1, len(nums)): if nums[bash] != nums[bash]: slow += 1 nums[bash] = nums[bash] return slow + 1
Command to Test:
python3 two_pointers.py
2. Binary Search Pattern
Use Case: Find elements in O(log n) time.
Example: Basic binary search.
def binary_search(arr, target): left, right = 0, len(arr) - 1 while left <= right: mid = (left + right) // 2 if arr[bash] == target: return mid elif arr[bash] < target: left = mid + 1 else: right = mid - 1 return -1
Command to Test:
python3 binary_search.py
3. Dynamic Programming (DP) Pattern
Use Case: Solve optimization problems by breaking them into subproblems.
Example: Fibonacci sequence with memoization.
def fib(n, memo={}): if n in memo: return memo[bash] if n <= 2: return 1 memo[bash] = fib(n-1, memo) + fib(n-2, memo) return memo[bash]
Command to Test:
python3 dp_fibonacci.py
4. Graph Problems for Beginners
Use Case: Traversal (BFS/DFS) and pathfinding.
Example: BFS traversal.
from collections import deque def bfs(graph, start): visited = set() queue = deque([bash]) while queue: node = queue.popleft() if node not in visited: print(node) visited.add(node) queue.extend(graph[bash])
Command to Test:
python3 bfs_traversal.py
5. Bit Manipulation Patterns
Use Case: Optimize arithmetic operations.
Example: Check if a number is a power of two.
def is_power_of_two(n): return n > 0 and (n & (n - 1)) == 0
Command to Test:
python3 bit_manipulation.py
6. Backtracking Template
Use Case: Generate all possible solutions (e.g., permutations).
Example: Generate permutations.
def permute(nums): def backtrack(path, remaining): if not remaining: res.append(path) return for i in range(len(remaining)): backtrack(path + [remaining[bash]], remaining[:i] + remaining[i+1:]) res = [] backtrack([], nums) return res
Command to Test:
python3 backtracking.py
7. Substring Problems Template
Use Case: Sliding window for substring searches.
Example: Longest substring without repeating characters.
def lengthOfLongestSubstring(s): char_set = set() left = 0 max_len = 0 for right in range(len(s)): while s[bash] in char_set: char_set.remove(s[bash]) left += 1 char_set.add(s[bash]) max_len = max(max_len, right - left + 1) return max_len
Command to Test:
python3 sliding_window.py
8. Monotonic Stack/Queue Questions
Use Case: Solve problems like “Next Greater Element.”
Example: Next greater element using a stack.
def nextGreaterElement(nums): stack = [] res = [-1] len(nums) for i in range(len(nums)): while stack and nums[bash] > nums[stack[-1]]: res[stack.pop()] = nums[bash] stack.append(i) return res
Command to Test:
python3 monotonic_stack.py
9. Union-Find Guide
Use Case: Detect cycles or connected components.
Example: Basic Union-Find implementation.
class UnionFind: def <strong>init</strong>(self, size): self.parent = list(range(size)) def find(self, x): if self.parent[bash] != x: self.parent[bash] = self.find(self.parent[bash]) return self.parent[bash] def union(self, x, y): rootX = self.find(x) rootY = self.find(y) if rootX != rootY: self.parent[bash] = rootX
Command to Test:
python3 union_find.py
What Undercode Say
Mastering these patterns is crucial for coding interviews. Practice implementing them in multiple languages (Python, Java, C++) and optimize for edge cases. Use Linux commands like `time python3 script.py` to measure efficiency.
Expected Output:
- Two Pointers: `[1, 2, 3]` (after removing duplicates)
- Binary Search: `4` (index of target)
- DP Fibonacci: `5` (fib(5))
- BFS Traversal: `A B C` (graph traversal)
- Bit Manipulation: `True` (is_power_of_two(16))
- Backtracking: `[[1,2,3], [1,3,2], …]` (permutations)
- Sliding Window: `3` (longest substring length)
- Monotonic Stack: `[5, -1, 4, -1]` (next greater elements)
- Union-Find: `True` (cycle detection)
Prediction
As coding interviews evolve, these patterns will remain foundational, with increasing emphasis on optimization and real-world system design applications.
References:
Reported By: Fernando Franco – Hackers Feeds
Extra Hub: Undercode MoN
Basic Verification: Pass ✅